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Learning Outcomes
Upon completion of this unit:
 Students will be able to analyze the HTTP protocol so that student can analyze IoT

system that use HTTP as the communication protocol

 Students will be able to analyze the HTTPS protocol so that student can analyze IoT
system that use HTTP as the communication protocol

 Students will be able to explain webscokets so that student can analyze IoT system 
that use webscokets as the communication protocol
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Prerequisites and Module Time
Prerequisites
 Students should have taken classes on operating system and computer 

architecture. 

 Students must have taken crypto and know how public key crypto and symmetric 
key crypto work.

 Students should have mastered programming Raspberry Pi.

 Students should know basic concepts of networking.

Module time
Two-hour lecture 

One-hour homework
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Outline
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HyperText Transfer Protocol (HTTP)
HTTP, communication protocol between a 
client (browser) and a web server
Client and server establish TCP connection

Client requests content

 Server responds with requested content

Client and server close connection 

HTTP history
 Initiated by Tim Berners-Lee at CERN in 1989

 Standardized by IETF and W3C, the first 
definition of HTTP/1.1 in 1997, 1999 and 
2014

 Standardized HTTP/2 in 2015

Web
server

HTTP 
request

HTTP response
(content)

Web
client

(browser) 
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HTTP messages
HTTP is the language between web clients and web servers 

Each message has three parts

A client request message has components in the following order
Request line

Header section

Message body

A server response message has components in the following order
Response line

Header section

Message body
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Anatomy of an HTTP Transaction
unix> telnet www.aol.com 80

Trying 205.188.146.23...                           

Connected to aol.com.

Escape character is '^]'.

GET / HTTP/1.1

host: www.aol.com

HTTP/1.0 200 OK

MIME-Version: 1.0

Date: Mon, 08 Jan 2001 04:59:42 GMT

Server: NaviServer/2.0 AOLserver/2.3.3

Content-Type: text/html

Content-Length: 42092

<html>

...                                

</html>

Connection closed by foreign host. 

unix>

Client: open connection to server

Telnet prints 3 lines to the terminal

Client: request line

Client: required HTTP/1.1 HOST header

Client: empty line terminates headers.

Server: response line

Server: followed by five response headers

Server: expect HTML in the response body

Server: expect 42,092 bytes in the resp body

Server: empty line (“\r\n”) terminates headers

Server: first HTML line in response body

Server: lines of HTML not shown.

Server: last HTML line in response body

Client: closes connection and terminates
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Client – Request line
Client sends a request message to server at a port, 80 by default

The first part of the message is the request line, containing:
A method (HTTP command) such as GET or POST

GET – request data from a specified resource
POST – submit data for processing to a specified resource

A document address, and

An HTTP version number

Example:
GET  /index.html  HTTP/1.0
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Other methods
Other methods beside GET and POST are:

HEAD: Like GET, but ask that only a header be returned

PUT: Request to store the entity-body at the URI

DELETE: Request removal of data at the URI

LINK: Request header information to be associated with a document on the server

UNLINK: Request to undo a LINK request

OPTIONS: Request information about communications options on the server

TRACE: Request that the entity-body be returned as received (used for debugging)
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Client – Header information
The second part of a request is optional header information, notifying the 
server:
Client software

Acceptable data/file formats

All information is in the form  of Name: Value

Example:
User-Agent: Mozilla/2.02Gold (WinNT; I)

Accept: image/gif, image/jpeg, */*

A blank line ends the header
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Client request headers
Accept: type/subtype, type/subtype, ...
 Specifies media types that the client prefers to accept

Accept-Language: en, fr, de
Preferred language (For example: English, French, German) 

User-Agent: string
The browser or other client program sending the request

From: dave@acm.org
Email address of user of client program

Cookie: name=value
 Information about a cookie for that URL

Multiple cookies can be separated by commas
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Client – Entity body
The third part of a request (after the blank line) is the entity-body for 
optional data
Used mostly by POST requests

Always empty for a GET request
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Server – Status line
The first part is the status line, including:
The HTTP version

A status code

A short description of what the status code means

Example: HTTP/1.1 404 Not Found

Status codes are in groups:
100-199 Informational

200-299 The request was successful

300-399 The request was redirected

400-499 The request failed

500-599 A server error occurred
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Common status codes
200  OK

 Everything worked, here’s the data

301  Moved Permanently
 URI was moved, but here’s the new address for your records

302  Moved temporarily
 URL temporarily out of service, keep the old one but use this one for now

400  Bad Request
 There is a syntax error in your request

403  Forbidden
 You can’t do this, and we won’t tell you why

404  Not Found
 No such document

408 Request Time-out, 504 Gateway Time-out
 Request took too long to fulfill for some reason
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Server – Header information
The second part of the response is header information, ended by a blank line

Example:
 Server: Apache

 Last-Modified: Tue, 20 Mar 2018 15:36:52 GMT

 ETag: "1d6ef3d29e3b6654c7c8e7de310a062c"

 Access-Control-Allow-Origin: *

 Link: <https://www.ucf.edu/alert/wp-json/>; rel="https://api.w.org/"

 Vary: Accept-Encoding

 Content-Encoding: gzip

 X-Apache-Server: SMCAWEB1

 Content-Type: text/xml; charset=UTF-8

 Content-Length: 467

 Accept-Ranges: bytes

 Date: Fri, 06 Apr 2018 15:14:44 GMT

 X-Varnish: 1230425297 1230350034

 Age: 2035

 Via: 1.1 varnish

 Connection: keep-alive

 X-Cache: HIT

 X-Varnish-Server: SMCACACHE2



16

Viewing the response
Live HTTP Headers for Firefox

An example

HTTP/1.1 200 OK

Date: Wed, 10 Sep 2003 00:26:53 GMT
Server: Apache/1.3.26 (Unix) PHP/4.2.2 mod_perl/1.27

mod_ssl/2.8.10 OpenSSL/0.9.6e
Last-Modified: Tue, 09 Sep 2003 19:24:50 GMT
ETag: "1c1ad5-1654-3f5e2902”
Accept-Ranges: bytes
Content-Length: 5716
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html

Status line 

Response 
headers
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Server response headers
Server: NCSA/1.3
Name and version of the server

Content-Type: type/subtype
 Should be of a type and subtype specified by the client’s Accept header

Set-Cookie: name=value; options
Requests the client to store a cookie with the given name and value
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Server – Entity body
The third part of a server response is the entity body

This is often an HTML page
But it can also be a jpeg, a gif, plain text, etc.-- anything the browser (or other 

client) is prepared to accept
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HTTP Summary
Client (browser) requests documents/files from server using the HTTP 
protocol
Browser then displays the documents (HTMLs/images/…)

Users of the browser do not see the underlying HTTP message exchanges
Only see the results
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HTTP hacking tools
Burp - intercept, view, and modify HTTP requests and responses. 
 First, download and run Burp locally 

Configure a few settings to ensure our browser uses Burp
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mitmproxy
An open course interactive HTTPS proxy

Can manipulate the ongoing request and response

Supports the man-in-the-middle attack kind of analysis of https sessions
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https
https = http over SSL/TLS

TLS builds a secure tunnel between the client and server and http 
messages are exchanged through the tunnel

Certificates play a critical role in https
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Certificate
X.509 - the most common format for public key certificates 
Very general

The format is use case oriented
e.g. Public Key Infrastructure (PKI) X.509 in RFC 5280.

Certificate Authority (CA)

(eca, dca), certificate(CommonNameca, eca) preinstalled 
everywhere

Alice 
(eA, dA), certificate(CommonNameA, eA)

Server 
(es, ds), 
certificate(ip/url, es)

Bob
(eB, dB), certificate(CommonNameB, 
eB)
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Verifying Certificates
How does Alice (browser) obtain eBob ?

CA

eBob and
proof “I am Bob”

Browser
Alice

eCA, dCA

check
proof

issue Certificate 
signed with dCA

choose
(eBob, dBob) 

Server 
Bob

Verify
Certificate

Bob
eBob

Bob 
eBob

eCA

eCA
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Certificates: example –
Firefox/Tools/Options/Privacy&Security/View Certificates
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Certificate Authorities
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Certificates on the web
The owner of a certificate is called a subject

Common name is the identity of the owner

Subject’s CommonName can be:
An explicit name, e.g. ece.ufl, cs.ucf, or

A name with a wildcard character, e.g. *.ufl.edu, *.ucf.edu     or    cs*.ucf.edu
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SSL/TLS Review
Bob generates    (eBob ,  dBob )

Alice uses  eBob to encrypts m and only Bob can decrypt c to get m

Alice

Encryption
m c

Bob

Decryption
c m

eBob dBob

Public-key encryption:

Internet
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Overview of SSL/TLS and HTTPS

browser server

(e, d)

client-hello

server-hello   +   server-cert (e)

key exchange (several options)

Finished

client-key-exchange:   e(k)

Random k

Random k

HTTP data encrypted

Most common:    server authentication only
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TLS/SSL server certificate [1]
SSL client performs the certification path validation algorithm :
The subject of the certificate matches the hostname to which the client is trying to 

connect.

The certificate is valid.

The primary hostname (domain name of the website) is listed as the 
Common Name in the Subject field of the certificate. 
 Subject Alternative Name (SAN) certificates or Unified Communications 

Certificates (UCC certificates): a certificate with multiple hostnames (multiple 
websites) in the field Subject Alternative Name, or in the Subject Common Name
backward compatibility.

wildcard certificate - hostnames with an asterisk (*)
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TLS/SSL client certificate
Authenticate the client connecting to a TLS service
 For access control, for example

Contain an email address or personal name 
Rather than a hostname

Supported by many web browsers
Most services use passwords and cookies to authenticate users

Can be used to authenticate devices to ensure that only authorized 
devices can connect to the server
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Issues with HTTP
Half-duplex: request and then response
Half-duplex - each party can communicate with the other but not simultaneously

 Full-duplex – two parties can communicate with each other simultaneously

Too much overhead for real-time communication
Request line, header
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WebSockets [3]
WebSockets builds a full-duplex connection between a client and server 
Both parties can send data anytime.

How it works
The client sends a regular HTTP request to the server with an “Upgrade” header

 If the servers agrees to the upgrade request, it responds with an Upgrade header

Now a WebSocket connection replaces the initial HTTP connection
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Where is WebSocket used? [2]
Social feeds

Multiplayer games

Collaborative editing/coding

Clickstream data

Financial tickers

Sports updates

Multimedia chat

Location-based apps

Online education
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Example of a WebSocket Session

HTTP
Client

HTTP
Server

HTTP GET Upgrade request
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WebSocket protocol

HTTP
Client

HTTP
ServerHTTP 101 Switching Protocol response
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