
IoT Security and Privacy
Other IoT communication protocols - HTTP,
HTTPS and Websockets
YIER J IN

UNIVERSITY OF FLORIDA

EMAIL: YIER.J IN@ECE.UFL.EDU

SLIDES ARE ADAPTED FROM PROF. XINWEN FU @ UCF/UMASS

Fall 2019 – EEL 5934 - IoT Security and Privacy1

mailto:yier.jin@ece.ufl.edu

2

Learning Outcomes
Upon completion of this unit:
 Students will be able to analyze the HTTP protocol so that student can analyze IoT

system that use HTTP as the communication protocol

 Students will be able to analyze the HTTPS protocol so that student can analyze IoT
system that use HTTP as the communication protocol

 Students will be able to explain webscokets so that student can analyze IoT system
that use webscokets as the communication protocol

3

Prerequisites and Module Time
Prerequisites
 Students should have taken classes on operating system and computer

architecture.

 Students must have taken crypto and know how public key crypto and symmetric
key crypto work.

 Students should have mastered programming Raspberry Pi.

 Students should know basic concepts of networking.

Module time
Two-hour lecture

One-hour homework

4

Outline
http

https

Websockets

5

HyperText Transfer Protocol (HTTP)
HTTP, communication protocol between a
client (browser) and a web server
Client and server establish TCP connection

Client requests content

 Server responds with requested content

Client and server close connection

HTTP history
 Initiated by Tim Berners-Lee at CERN in 1989

 Standardized by IETF and W3C, the first
definition of HTTP/1.1 in 1997, 1999 and
2014

 Standardized HTTP/2 in 2015

Web
server

HTTP
request

HTTP response
(content)

Web
client

(browser)

6

HTTP messages
HTTP is the language between web clients and web servers

Each message has three parts

A client request message has components in the following order
Request line

Header section

Message body

A server response message has components in the following order
Response line

Header section

Message body

7

Anatomy of an HTTP Transaction
unix> telnet www.aol.com 80

Trying 205.188.146.23...

Connected to aol.com.

Escape character is '^]'.

GET / HTTP/1.1

host: www.aol.com

HTTP/1.0 200 OK

MIME-Version: 1.0

Date: Mon, 08 Jan 2001 04:59:42 GMT

Server: NaviServer/2.0 AOLserver/2.3.3

Content-Type: text/html

Content-Length: 42092

<html>

...

</html>

Connection closed by foreign host.

unix>

Client: open connection to server

Telnet prints 3 lines to the terminal

Client: request line

Client: required HTTP/1.1 HOST header

Client: empty line terminates headers.

Server: response line

Server: followed by five response headers

Server: expect HTML in the response body

Server: expect 42,092 bytes in the resp body

Server: empty line (“\r\n”) terminates headers

Server: first HTML line in response body

Server: lines of HTML not shown.

Server: last HTML line in response body

Client: closes connection and terminates

8

Client – Request line
Client sends a request message to server at a port, 80 by default

The first part of the message is the request line, containing:
A method (HTTP command) such as GET or POST

GET – request data from a specified resource
POST – submit data for processing to a specified resource

A document address, and

An HTTP version number

Example:
GET /index.html HTTP/1.0

9

Other methods
Other methods beside GET and POST are:

HEAD: Like GET, but ask that only a header be returned

PUT: Request to store the entity-body at the URI

DELETE: Request removal of data at the URI

LINK: Request header information to be associated with a document on the server

UNLINK: Request to undo a LINK request

OPTIONS: Request information about communications options on the server

TRACE: Request that the entity-body be returned as received (used for debugging)

10

Client – Header information
The second part of a request is optional header information, notifying the
server:
Client software

Acceptable data/file formats

All information is in the form of Name: Value

Example:
User-Agent: Mozilla/2.02Gold (WinNT; I)

Accept: image/gif, image/jpeg, */*

A blank line ends the header

11

Client request headers
Accept: type/subtype, type/subtype, ...
 Specifies media types that the client prefers to accept

Accept-Language: en, fr, de
Preferred language (For example: English, French, German)

User-Agent: string
The browser or other client program sending the request

From: dave@acm.org
Email address of user of client program

Cookie: name=value
 Information about a cookie for that URL

Multiple cookies can be separated by commas

12

Client – Entity body
The third part of a request (after the blank line) is the entity-body for
optional data
Used mostly by POST requests

Always empty for a GET request

13

Server – Status line
The first part is the status line, including:
The HTTP version

A status code

A short description of what the status code means

Example: HTTP/1.1 404 Not Found

Status codes are in groups:
100-199 Informational

200-299 The request was successful

300-399 The request was redirected

400-499 The request failed

500-599 A server error occurred

14

Common status codes
200 OK

 Everything worked, here’s the data

301 Moved Permanently
 URI was moved, but here’s the new address for your records

302 Moved temporarily
 URL temporarily out of service, keep the old one but use this one for now

400 Bad Request
 There is a syntax error in your request

403 Forbidden
 You can’t do this, and we won’t tell you why

404 Not Found
 No such document

408 Request Time-out, 504 Gateway Time-out
 Request took too long to fulfill for some reason

15

Server – Header information
The second part of the response is header information, ended by a blank line

Example:
 Server: Apache

 Last-Modified: Tue, 20 Mar 2018 15:36:52 GMT

 ETag: "1d6ef3d29e3b6654c7c8e7de310a062c"

 Access-Control-Allow-Origin: *

 Link: <https://www.ucf.edu/alert/wp-json/>; rel="https://api.w.org/"

 Vary: Accept-Encoding

 Content-Encoding: gzip

 X-Apache-Server: SMCAWEB1

 Content-Type: text/xml; charset=UTF-8

 Content-Length: 467

 Accept-Ranges: bytes

 Date: Fri, 06 Apr 2018 15:14:44 GMT

 X-Varnish: 1230425297 1230350034

 Age: 2035

 Via: 1.1 varnish

 Connection: keep-alive

 X-Cache: HIT

 X-Varnish-Server: SMCACACHE2

16

Viewing the response
Live HTTP Headers for Firefox

An example

HTTP/1.1 200 OK

Date: Wed, 10 Sep 2003 00:26:53 GMT
Server: Apache/1.3.26 (Unix) PHP/4.2.2 mod_perl/1.27

mod_ssl/2.8.10 OpenSSL/0.9.6e
Last-Modified: Tue, 09 Sep 2003 19:24:50 GMT
ETag: "1c1ad5-1654-3f5e2902”
Accept-Ranges: bytes
Content-Length: 5716
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html

Status line

Response
headers

17

Server response headers
Server: NCSA/1.3
Name and version of the server

Content-Type: type/subtype
 Should be of a type and subtype specified by the client’s Accept header

Set-Cookie: name=value; options
Requests the client to store a cookie with the given name and value

18

Server – Entity body
The third part of a server response is the entity body

This is often an HTML page
But it can also be a jpeg, a gif, plain text, etc.-- anything the browser (or other

client) is prepared to accept

19

HTTP Summary
Client (browser) requests documents/files from server using the HTTP
protocol
Browser then displays the documents (HTMLs/images/…)

Users of the browser do not see the underlying HTTP message exchanges
Only see the results

20

HTTP hacking tools
Burp - intercept, view, and modify HTTP requests and responses.
 First, download and run Burp locally

Configure a few settings to ensure our browser uses Burp

21

mitmproxy
An open course interactive HTTPS proxy

Can manipulate the ongoing request and response

Supports the man-in-the-middle attack kind of analysis of https sessions

22

Outline
http

https

Websockets

23

https
https = http over SSL/TLS

TLS builds a secure tunnel between the client and server and http
messages are exchanged through the tunnel

Certificates play a critical role in https

24

Certificate
X.509 - the most common format for public key certificates
Very general

The format is use case oriented
e.g. Public Key Infrastructure (PKI) X.509 in RFC 5280.

Certificate Authority (CA)

(eca, dca), certificate(CommonNameca, eca) preinstalled
everywhere

Alice
(eA, dA), certificate(CommonNameA, eA)

Server
(es, ds),
certificate(ip/url, es)

Bob
(eB, dB), certificate(CommonNameB,
eB)

25

Verifying Certificates
How does Alice (browser) obtain eBob ?

CA

eBob and
proof “I am Bob”

Browser
Alice

eCA, dCA

check
proof

issue Certificate
signed with dCA

choose
(eBob, dBob)

Server
Bob

Verify
Certificate

Bob
eBob

Bob
eBob

eCA

eCA

26

Certificates: example –
Firefox/Tools/Options/Privacy&Security/View Certificates

27

Certificate Authorities

28

Certificates on the web
The owner of a certificate is called a subject

Common name is the identity of the owner

Subject’s CommonName can be:
An explicit name, e.g. ece.ufl, cs.ucf, or

A name with a wildcard character, e.g. *.ufl.edu, *.ucf.edu or cs*.ucf.edu

29

SSL/TLS Review
Bob generates (eBob , dBob)

Alice uses eBob to encrypts m and only Bob can decrypt c to get m

Alice

Encryption
m c

Bob

Decryption
c m

eBob dBob

Public-key encryption:

Internet

30

Overview of SSL/TLS and HTTPS

browser server

(e, d)

client-hello

server-hello + server-cert (e)

key exchange (several options)

Finished

client-key-exchange: e(k)

Random k

Random k

HTTP data encrypted

Most common: server authentication only

31

TLS/SSL server certificate [1]
SSL client performs the certification path validation algorithm :
The subject of the certificate matches the hostname to which the client is trying to

connect.

The certificate is valid.

The primary hostname (domain name of the website) is listed as the
Common Name in the Subject field of the certificate.
 Subject Alternative Name (SAN) certificates or Unified Communications

Certificates (UCC certificates): a certificate with multiple hostnames (multiple
websites) in the field Subject Alternative Name, or in the Subject Common Name
backward compatibility.

wildcard certificate - hostnames with an asterisk (*)

32

TLS/SSL client certificate
Authenticate the client connecting to a TLS service
 For access control, for example

Contain an email address or personal name
Rather than a hostname

Supported by many web browsers
Most services use passwords and cookies to authenticate users

Can be used to authenticate devices to ensure that only authorized
devices can connect to the server

33

Outline
http

https

Websockets

34

Issues with HTTP
Half-duplex: request and then response
Half-duplex - each party can communicate with the other but not simultaneously

 Full-duplex – two parties can communicate with each other simultaneously

Too much overhead for real-time communication
Request line, header

35

WebSockets [3]
WebSockets builds a full-duplex connection between a client and server
Both parties can send data anytime.

How it works
The client sends a regular HTTP request to the server with an “Upgrade” header

 If the servers agrees to the upgrade request, it responds with an Upgrade header

Now a WebSocket connection replaces the initial HTTP connection

36

Where is WebSocket used? [2]
Social feeds

Multiplayer games

Collaborative editing/coding

Clickstream data

Financial tickers

Sports updates

Multimedia chat

Location-based apps

Online education

37

Example of a WebSocket Session

HTTP
Client

HTTP
Server

HTTP GET Upgrade request

38

WebSocket protocol

HTTP
Client

HTTP
ServerHTTP 101 Switching Protocol response

39

References

[1] Public key certificate, Wikipedia, 2017

[2] Jonathan Freeman, 9 killer uses for WebSockets, InfoWorld, Nov 14, 2013

[3] Matt West, An Introduction to WebSockets, 2018

